ET 438 b Digital Control and Data Acquisition
Department of Technology

Lesson 12: Analog Signal Conditioning

Learning Objectives

After this presentation you will be able to:
> Design a voltage-to-current interface for a transducer and simulate its operation using commonly available software
> List the modes of operation of a Wheatstone bridge circuit
> Explain how Wheatstone bridge resistor values effect linearity and sensitivity
> Design a signal conditioning circuit for a Wheatstone bridge.

Analog-to-Analog Conversion Signal Conditioning

Current-to-Voltage Converter
I-to-V Converter
Example: Find a value the value of R that converts a 4 mA to 20 mA
current signal into a $1-5 \mathrm{~V}$ output Voltage.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{o}}=\mathrm{I}_{\mathrm{in}} \cdot \mathrm{R} \Rightarrow \mathrm{R}=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{I}_{\text {in }}} \\
& \mathrm{V}_{\mathrm{o}}=1 \mathrm{~V} @ \mathrm{I}_{\text {in }}=4 \mathrm{~mA} \\
& \mathrm{R}=\frac{1 \mathrm{~V}}{4 \mathrm{~mA}}=250 \Omega
\end{aligned}
$$

Since $\mathrm{V}^{+}=\mathrm{V}^{-}$
Check output at 20 mA

$$
\mathrm{V}_{\mathrm{o}}=250 \Omega \cdot(20 \mathrm{~mA})=5 \mathrm{~V}
$$

$V_{o}=I_{\text {in }} \cdot R$

Signal Conditioning

Voltage-to-Current Converter
V-to-I Converter (Transconductance Amps)

Ungrounded load
$\mathrm{V}^{+}=\mathrm{V}^{-}=\mathrm{V}_{\text {in }}$ and $\mathrm{I}_{\text {in }}=0$
So $I_{0}-I_{R}=0$ or $I_{0}=I_{R}$ $\mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\mathrm{R}}=\frac{\mathrm{V}^{-}}{\mathrm{R}}$ but $\mathrm{V}^{-}=\mathrm{V}^{+}=\mathrm{V}_{\text {in }}$ $I_{o}=\frac{V_{\text {in }}}{R}$

Note: $R_{L}<R$ for practical circuit operation. OP AMP output voltage determines magnitude of R_{L} for constant current

Signal Conditioning Example

Convert a $0-5 \mathrm{~V}$ dc voltage signal to a $4-20 \mathrm{~mA}$ current signal using OP AMP circuits.

Determine the ratio of spans

$$
\mathrm{R} 6=\frac{\mathrm{V}_{\text {in }}}{\mathrm{I}_{0}}=\frac{\mathrm{V}_{\text {in(max) }}-\mathrm{V}_{\text {in(min) }}}{\mathrm{I}_{\mathrm{I}_{\text {max }}}-\mathrm{I}_{0 \text { min }}}=\frac{5 \mathrm{~V}-0 \mathrm{~V}}{20 \mathrm{~mA}-4 \mathrm{~mA}}=\frac{5 \mathrm{~V}}{16 \mathrm{~mA}}=312.5 \Omega
$$

Signal Conditioning Example

Compute the value of Vbias to give the value of minimum output
current
$\mathrm{I}_{0 \text { min }}=4 \mathrm{~mA}$
$I_{0}=\frac{V_{\text {in }}}{R} \Rightarrow I_{0} \cdot R=V_{\text {in }}$
$\mathrm{V}_{\text {bias }}=\mathrm{I}_{0 \text { min }} \cdot \mathrm{R}$
$\mathrm{R}=312.5 \Omega$
$\mathrm{V}_{\text {bias }}=(4 \mathrm{~mA}) \cdot(312.5 \Omega)$
$\mathrm{V}_{\text {bias }}=1.25 \mathrm{~V}$

Check the output with
$V_{\text {in }}=5 \mathrm{~V}$
What in max value of R_{L} ?
Assume $\mathrm{V}_{\text {sat }}=10.5 \mathrm{~V}$
$\mathrm{I}_{0}=\frac{\mathrm{V}_{\text {in }}}{\mathrm{R}}$
$\mathrm{V}_{\text {max }}=\mathrm{V}_{\text {in(max) }}+\mathrm{V}_{\text {bias }}$
$\mathrm{V}_{\text {max }}=5 \mathrm{~V}+1.25 \mathrm{~V}$
$\mathrm{I}_{0}=\frac{6.25 \mathrm{~V}}{312.5 \Omega}$
$\mathrm{I}_{0}=0.02 \mathrm{~A}=20 \mathrm{~mA}$
$\mathrm{R}_{\mathrm{L} \text { (max) }}=\frac{10.5 \mathrm{~V}-6.25 \mathrm{~V}}{0.02 \mathrm{~A}}=212.5 \Omega$
Assumes OP AMP has sufficient current output

Circuit Simulation of Example: Dc Sweep

Output Current Vs Input Voltage

$\overline{\text { A }}$

Instrumentation Amps with High Impedance Input

Two-stage circuit

$$
A_{v 1}=\left(\frac{E 2-E 1}{V 2-V 1}\right)=\frac{2 R 1}{R 2}+1
$$

$$
A_{\mathrm{v} 2}=\frac{V_{0}}{E 2-E 1}=\frac{R 4}{R 3}
$$

Overall circuit gain $\quad \mathrm{V}_{0}=\left(\frac{2 \mathrm{R} 1}{\mathrm{R} 2}+1\right) *\left(\frac{\mathrm{R} 4}{\mathrm{R} 3}\right) *(\mathrm{~V} 2-\mathrm{V} 1)$

Signal Conditioning-Bridge Circuits

Dc bridges (Wheatstone bridges) Used to detect small resistance changes in sensors. Typically used with sensors that measure force, temperature, and pressure.

Lesson 12_et438b.pptx

Bridge Use Methods

There are two operating modes for a dc bridge: balanced (null) and unbalanced
Null Mode - adjust R_{3} variable resistor until $\mathrm{l}_{\mathrm{ab}}=\mathrm{o}$. Need automatic nulling circuit for automatic operation.

Unbalanced Mode - insert sensor and null bridge for sensor measurement. When initial value of sensor changes measure difference in voltage. Bridge only balanced at one point

Unbalanced Bridge Operation

Note the unbalanced bridge shown below. U1 and U2 provide high-Z input. Circuit gain provided by U_{3} using the following formula.

Find expression for bridge equation. in terms of the change in sensor resistance R_{s}.

Unbalanced Bridge Analysis

Bridge Circuit

Normalize V_{ba} by dividing by supply V .
Find common denominator

$$
\frac{V_{b}-V_{a}}{V_{d c}}=\left(\frac{R_{4}}{R_{3}+R_{4}}-\frac{R_{2}}{R_{s}+R_{2}}\right)=\frac{R_{4}\left(R_{s}+R_{2}\right)-R_{2}\left(R_{3}+R_{4}\right)}{\left(R_{3}+R_{4}\right)\left(R_{s}+R_{2}\right)}
$$

Unbalanced Bridge Analysis

Bridge Analysis (Continued)
Expand terms and simplify

$$
\frac{V_{b}-V_{a}}{V_{d c}}=\frac{R_{4} R_{s}+R_{4} R_{2}-R_{2} R_{3}-B_{2} R_{4}}{\left(R_{3}+R_{4}\right)\left(R_{s}+R_{2}\right)}=\frac{R_{4} R_{s}-R_{2} R_{3}}{\left(R_{3}+R_{4}\right)\left(R_{s}+R_{2}\right)}
$$

From the previous balance equation

$$
\frac{R_{b a} R_{4}}{R_{3}}=R_{2}
$$

Substitute these equations into the above relationship

$$
\begin{gathered}
\frac{V_{b}-V_{a}}{V_{d c}}=\frac{R_{4} R_{s}-R_{b a l} R_{4}}{\left(R_{3}+R_{4}\right)\left(R_{s}+R_{b a l} R_{4} / R_{3}\right)} \\
\left(R_{3}+R_{4}\right)\left(R_{s}+R_{b a l} R_{4} / R_{3}\right)=R_{3} R_{s}+R_{4} R_{s}+R_{b a l} R_{4}+R_{b a l} R_{4}^{2} / R_{3}
\end{gathered}
$$

Unbalanced Bridge Analysis

Bridge Analysis (Continued)
Combine the past two equations and clear R_{3} from the denominator.

$$
\frac{\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}}{\mathrm{~V}_{\mathrm{dc}}}=\frac{\mathrm{R}_{3} \mathrm{R}_{4}\left(\mathrm{R}_{\mathrm{s}}-\mathrm{R}_{\mathrm{bal}}\right)}{\mathrm{R}_{3}{ }^{2} \mathrm{R}_{\mathrm{s}}+\mathrm{R}_{3} \mathrm{R}_{4} \mathrm{R}_{\mathrm{s}}+\mathrm{R}_{3} \mathrm{R}_{4} \mathrm{R}_{\mathrm{bal}}+\mathrm{R}_{\mathrm{bal}} \mathrm{R}_{4}{ }^{2}}
$$

Now let $R_{4}=R_{3}$ and simplify further

$$
\begin{aligned}
& \frac{\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}}{\mathrm{~V}_{\mathrm{dc}}}=\frac{\mathrm{R}_{3}{ }^{2}\left(\mathrm{R}_{\mathrm{s}}-\mathrm{R}_{\mathrm{bal}}\right)}{\mathrm{R}_{3}{ }^{2}\left(2\left(\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{\mathrm{bal}}\right)\right.}=\frac{\mathrm{R}_{3}{ }^{2}\left(\mathrm{R}_{\mathrm{s}}-\mathrm{R}_{\mathrm{bal}}\right)}{\mathrm{R}_{3}{ }^{2} \mathrm{R}_{\mathrm{s}}+\mathrm{R}_{3}{ }^{2} \mathrm{R}_{\mathrm{s}}+\mathrm{R}_{3}{ }^{2} \mathrm{R}_{\mathrm{bal}}+\mathrm{R}_{\mathrm{bal}} \mathrm{R}_{3}{ }^{2}} \\
& \frac{\mathrm{~V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}}{\mathrm{~V}_{\mathrm{dc}}}=\frac{\mathrm{R}_{3}{ }^{2}\left(\mathrm{R}_{\mathrm{s}}-\mathrm{R}_{\mathrm{bal}}\right)}{2 \mathrm{R}_{3}{ }^{2} \mathrm{R}_{\mathrm{s}}+2 \mathrm{R}_{3}{ }^{2} \mathrm{R}_{\mathrm{bal}}}=\frac{\mathrm{R}_{3}{ }^{2}\left(\mathrm{R}_{\mathrm{s}}-\mathrm{R}_{\mathrm{bal}}\right)}{\mathrm{R}_{3}{ }^{2}\left(2\left(\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{\mathrm{bal}}\right)\right)} \\
& \frac{\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}}{\mathrm{~V}_{\mathrm{dc}}}=\frac{\left(\mathrm{R}_{\mathrm{s}}-\mathrm{R}_{\text {bal }}\right)}{2\left(\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{\mathrm{bal}}\right)}
\end{aligned}
$$

Unbalanced Bridge Analysis

Equation below relates the output voltage change (per volt of supply V) to the change in sensor resistance.

Original Bridge $\quad \frac{\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}}{\mathrm{V}_{\mathrm{dc}}}=\frac{\left(\mathrm{R}_{\mathrm{s}}-\mathrm{R}_{\mathrm{bal}}\right)}{2\left(\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{\mathrm{bal}}\right)} \quad$ When $\mathrm{R}_{3}=\mathrm{R}_{4}$

Bridge Output Linearity Analysis

Example: An unbalanced bridge circuit converts temperature sensor resistance into a differential voltage that is amplified by a instrumentation amplifier. The temperature sensor has a resistance of 120 ohms at 35 C and a resistance range of go to 150 ohms.
1.) Design a dc bridge circuit with a 10 V supply that will give zero output at 35 C .
a.) Using $R_{3}=R_{4}=1000$ ohms
b.) Using $R_{3}=120, R_{4}=1000$ ohms
2.) Plot the output voltage over the range of operation at 5 ohm increments for both designs a.) $R_{3}=R_{4}=1000$ ohms b.) $R_{3}=120$ and $R_{4}=1000$ ohms
3.) Find the zero based linear approximation of the bridge output responses.
4.) Determine the maximum non-linearity for each case
5.) Determine the gain required for the instrumentation amplifier gain if a span of 15 V dc is required.

Bridge Output Linearity Analysis

Example Solution (Part 1a) Balance bridge with $R_{3}=R_{4}=1000$ ohms

Example Solution (Part 1b) Balance bridge with $R_{3}=120$ ohms $R_{4}=1000$ ohms

$$
\begin{array}{ll}
\frac{R_{s}}{R_{2}}=\frac{R_{3}}{R_{4}} \quad \frac{120}{R_{2}}=\frac{120}{1000} \\
R_{2}=1000
\end{array}
$$

Bridge Output Linearity Analysis

Example Solution (Part 2a) plot output V with $R_{3}=R_{4}=1000$ ohms

$$
\begin{aligned}
& V_{b}-V_{a}=\frac{\left(R_{s}-R_{b a l}\right)}{2\left(R_{s}+R_{b a l}\right)} V_{d c} \\
& R_{\text {bal }}=\frac{R_{2} R_{4}}{R_{3}}=\frac{120(1000)}{1000}=120 \quad R_{b a l}=120
\end{aligned}
$$

Plot values of R_{s} from 90 to 150 with Excel or MathCAD using the equation below

$$
\mathrm{V}_{\mathrm{d}}=\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}=\frac{\left(\mathrm{R}_{\mathrm{s}}-120\right)}{2\left(\mathrm{R}_{\mathrm{s}}+120\right)} 10
$$

Sample calculation
$R_{s}=900 h m s$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{d}}=\left[\frac{(90 \Omega-120 \Omega)}{2 \cdot(90 \Omega+120 \Omega)}\right] \cdot 10 \cdot \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{d}}=-0.714 \mathrm{~V}
\end{aligned}
$$

Output Plot $R_{3}=R_{4}=1000$ Ohms

$\mathrm{r}_{\mathrm{S}}=$	$\mathrm{V}_{\mathrm{d}}\left(\mathrm{r}_{\mathrm{s}}\right)$
90	-0.714
95	-0.581
100	-0.455
105	-0.333
110	-0.217
115	-0.106
120	0
125	0.102
130	0.2
135	0.294
140	0.385
145	0.472
150	0.556

Non-linear output

Linearity With R3 Not Equal to R4

Example Solution (Part 2b) plot output V with $\mathrm{R}_{3}=120 \mathrm{R}_{4}=1000$ ohms
Use the alternative formula written as function of $r_{s \prime}$, sensor resistance

$$
\mathrm{V}_{\mathrm{d} 1}\left(\mathrm{r}_{\mathrm{s}}\right)=\left[\frac{\mathrm{R}_{4} \cdot\left(\mathrm{r}_{\mathrm{s}}-\mathrm{R}_{\mathrm{bal}}\right)}{\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right) \cdot\left(\mathrm{r}_{\mathrm{s}}+\frac{\mathrm{R}_{\mathrm{bal}} \cdot \mathrm{R}_{4}}{\mathrm{R}_{3}}\right)}\right] \cdot \mathrm{V}_{\mathrm{dc}}
$$

Where

$$
\mathrm{R}_{\text {bal }}=\frac{\mathrm{R}_{2} \cdot \mathrm{R}_{3}}{\mathrm{R}_{4}}=\frac{(1000 \Omega)(120 \Omega)}{1000 \Omega}=120 \Omega
$$

Substitute
Values

$$
\begin{aligned}
\mathrm{V}_{\mathrm{d}}\left(\mathrm{r}_{\mathrm{s}}\right):=\frac{(1000 \Omega) \cdot\left(\mathrm{r}_{\mathrm{s}}-120 \Omega\right) \cdot 10 \cdot \mathrm{~V}}{(1120 \Omega) \cdot\left(\mathrm{r}_{\mathrm{s}}+1000 \Omega\right)} & \mathrm{V}_{\mathrm{d} 1}=\frac{(1000 \Omega)}{(1120 \Omega} \\
\text { Sample Calculation } & \mathrm{V}_{\mathrm{d} 1}=-0.246 \mathrm{~V}
\end{aligned}
$$

Output Plot $R_{3}=120$ and $R_{4}=1000$ Ohms

$\mathrm{V}_{\mathrm{d} 1}\left(\mathrm{r}_{\mathrm{s}}\right)$	$\mathrm{r}_{\mathrm{S}}=$
-0.246	90
-0.204	95
-0.162	100
-0.121	105
-0.08	110
-0.04	115
0	120
0.04	125
0.079	130
0.118	135
0.157	140
0.195	145
0.233	150

Less output voltage than first case

Linear Approximations

Example Solution (Part 3) Find zero based linear approximation. Assume line passes through zero and the average of the end points

For bridge with $\mathrm{R}_{3}=\mathrm{R}_{4}=1000$ ohms

$$
\begin{aligned}
& \text { at } R_{s}=90 \quad V_{d}=-0.714 \\
& \text { at } R_{s}=150 \quad V_{d}=0.556
\end{aligned}
$$

Average max value $(|-0.714|+|0.556|) / 2=0.635$
Use two data points:

$$
\begin{aligned}
& R_{\mathrm{s} 1}=120 \quad V_{d_{1}}=0 \\
& R_{\mathrm{s} 2}=150 \quad V_{d 2}=V_{a v e}=0.635
\end{aligned}
$$

Use two-point form of line to find equation

$$
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{d}}-\mathrm{V}_{\mathrm{d} 1}\right)=\frac{\left(\mathrm{V}_{\mathrm{d} 2}-\mathrm{V}_{\mathrm{d} 1}\right)}{\left(\mathrm{R}_{\mathrm{s} 2}-\mathrm{R}_{\mathrm{s} 1}\right)}\left(\mathrm{r}_{\mathrm{s}}-\mathrm{R}_{\mathrm{s} 1}\right) \\
& \left(\mathrm{V}_{\mathrm{d}}-0\right)=\frac{(0.635-0)}{(150-120)}\left(\mathrm{r}_{\mathrm{s}}-120\right) \\
& \mathrm{V}_{\mathrm{d}}=0.021167 \mathrm{r}_{\mathrm{s}}-2.54 \text { Equation }
\end{aligned}
$$

Linear Approximations

For bridge with $R_{3}=R_{4}=1000 \mathrm{ohms}$

Non-linearity
Increase as
R_{s} moves from
balance point

Linear Approximations

For bridge with $\mathrm{R}_{3}=120, \mathrm{R}_{4}=1000$ ohms

$$
\begin{aligned}
& \text { at } R_{s 1}=90 \quad V_{d 1}=-0.246 \\
& \text { at } R_{s 2}=150 \quad V_{d 2}=0.233
\end{aligned}
$$

Average max value $(|-0.246|+|0.233|) / 2=0.2395$

$$
\begin{aligned}
& \left(V_{d}-V_{d 1}\right)=\frac{\left(V_{d 2}-V_{d 1}\right)}{\left(R_{2}-R_{1}\right)}\left(r_{s}-R_{1}\right) \\
& \left(V_{d}-0\right)=\frac{(0.2395-0)}{(150-120)}\left(r_{s}-120\right) \\
& \quad V_{d}=0.007983 r_{s}-0.958 \text { Equation }
\end{aligned}
$$

Less output voltage but greater linearity Dc bridge approximately linear for small deviations around balance point

Maximum Non-Linearity

Example Solution (Part 4) Determine the maximum non-linearity for each bridge.
Take difference between actual bridge output and the zero based lines.
Maximum occurs at either end of the graph.

Percent Non-Linearity

Determine the percent non-linearity using the following formula

\%error $=\frac{\left|\mathrm{V}_{\mathrm{dl}}-\mathrm{V}_{\mathrm{d}}\right|}{\left|2 \cdot \mathrm{~V}_{\mathrm{dl}(\max)}\right|} 100 \%$
Where $\mathrm{V}_{\mathrm{dl}(\text { max })}=$ max linear output
$\cdots \times \mathrm{R} 3=\mathrm{R} 4$
$\mathrm{R} 3=120, \mathrm{R} 4=1000$

Instrumentation Amplifier Gains

Example Solution (Part 5) Determine the gain necessary for a span of 15 Vdc
Use average value of V_{d} to compute gain

For $\mathrm{R}_{3}=\mathrm{R}_{4}=1000$ ohms
Average max value
$(|-0.714|+|0.556|) / 2=0.635 \mathrm{~V}$

For $R_{3}=120$ and $R_{4}=1000$ ohms
Average max value
$(|-0.246|+|0.233|) / 2=0.2395 \mathrm{~V}$

Instrumentation Amplifier Gains

Compute the Amp gains using the gain formula

For $R_{3}=R_{4}=1000$ ohms
$\mathrm{V}_{0}=15 \mathrm{~V}$ dc $\mathrm{V}_{\mathrm{d}}=0.635 \mathrm{~V}$
$\frac{V_{0}}{V_{d}}=\frac{R_{f}}{R_{a}}=A_{V}$
$\frac{15 \mathrm{~V}}{0.635 \mathrm{~V}}=\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{\mathrm{a}}}=\mathrm{A}_{\mathrm{V}}$
$23.62=\mathrm{A}_{\mathrm{v}}$

For R3=120 and R4 $=1000$ ohms

$$
\begin{aligned}
& \mathrm{V}_{0}=15 \mathrm{~V} \text { dc } \mathrm{V}_{\mathrm{d}}=0.2395 \mathrm{~V} \\
& \frac{\mathrm{~V}_{0}}{\mathrm{~V}_{\mathrm{d}}}=\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{\mathrm{a}}}=\mathrm{A}_{\mathrm{V}} \\
& \frac{15 \mathrm{~V}}{0.2395 \mathrm{~V}}=\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{\mathrm{a}}}=\mathrm{A}_{\mathrm{V}} \\
& 62.63=\mathrm{A}_{\mathrm{V}}
\end{aligned}
$$

Note that increasing linearity reduces V_{d} and requires higher gains

End Lesson 12: Analog Signal Conditioning

ET 438 b Digital Control and Data Acquisition
Department of Technology

